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1 Bases, Involution, and Scalar Product of Symmetric Func-
tions
1.1 Five bases of symmetric functions

Let A = limn An be the ring of symmetric functions. Then A C Clxy,z2,...]; that is
feA=> cox®, where a = (a1, 0,...), >, o <00, and a; € N.

Example 1.1. es = 2129 + x123 + Toxs + T124 + oy + X324 + T125 + - - -

Definition 1.1. The monomial symmetric functions are
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where A = (A1,..., \p).
Proposition 1.1. The monomial symmetric functions form a basis for A.

Definition 1.2. The elementary symmetric functions are
€k = M(1k) = Z Ly = Ty,
i1 <<,
e =€) " ey,
where A = (A1,...,\p).
Proposition 1.2. The elementary symmetric functions form a basis for A.

Proof. f € Ais cxx™ + - - -, when written in lexicographic order. O

Theorem 1.1. The elementary symmetric functions are free generators of A as a ring;
i.e. they do not satisfy any algebraic equations.



Definition 1.3. The power symmetric functions are
Ph=mgy =2} + a5+,
PX = DPxi " Pxes
where A = (A1,..., Ap).
Proposition 1.3. The power symmetric functions form a basis for A.

Definition 1.4. The complete symmetric functions are
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where A = (A1,..., Ap).
Proposition 1.4. The complete symmetric functions form a basis for A.

Definition 1.5. The Schur functions are
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Theorem 1.2. The Schur functions form a basis for A.

1.2 Involution and scalar product on symmetric functions

Here is a dictionary relating symmetric functions and representation theory of S,

Symmetric functions ‘ Representations of S,

S\ S)‘
hy M* = lndSA1X~--><aA£ 1
ex M* ® sgn

This correspondence tells that we should have an involution w : A — A sending ey — hy
corresponding to &® sgn.

Theorem 1.3. The involution w : A — A sends sy — sy.
Theorem 1.4. The involution w : A — A sends py — €xp).

There is a scalar product on A that relates to the scalar product on characters of
representations of S,.



Definition 1.6. Define a scalar product on A by its value on the basis of Schur functions:
(Sx;8u) = Ox -
If f=> cysyand g= > rysy, then

(f,9) =) e

A
Proposition 1.5. (my,h,) = 6y, for all A, pu.
Proof. Write M* = @ K, ,S*. Then hy, = Y K ;). We also have s = > K, ,m,. O
Proposition 1.6. (px,pu) = 210y ., where

n!
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ZX

is the size of the conjugacy class corresponding to X\ in Sy.
Theorem 1.5. sy =}, allppt

So we can talk about characters of the symmetric group by only talking about symmetric
functions.?

"Maybe there is a factor of zx in here. Professor Pak doesn’t remember.
2Newton studied p,. That’s how old the idea of symmetric functions is.
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