Math 206B Lecture 19 Notes

Daniel Raban

February 22, 2019

1 Bases, Involution, and Scalar Product of Symmetric Functions

1.1 Five bases of symmetric functions

Let $\Lambda = \lim_{n \to \infty} \lambda_n$ be the ring of symmetric functions. Then $\Lambda \subseteq \mathbb{C}[x_1, x_2, \ldots]$; that is $f \in \Lambda = \sum c_{\alpha} x^{\alpha}$, where $\alpha = (\alpha_1, \alpha_2, \ldots), \sum_{\alpha} \alpha_i < \infty$, and $\alpha_i \in \mathbb{N}$.

Example 1.1. $e_2 = x_1x_2 + x_1x_3 + x_2x_3 + x_1x_4 + x_2x_4 + x_3x_4 + x_1x_5 + \cdots$

Definition 1.1. The monomial symmetric functions are

$$m_{\lambda} = \left[\sum_{\substack{\sigma \in S_{\ell} \\ i_{1} < \dots < i_{\ell}}} x_{i_{1}}^{\lambda_{\sigma(1)}} x_{i_{2}}^{\lambda_{\sigma(2)}} \cdots x_{i_{\ell}}^{\lambda_{\sigma(\ell)}} \right] / \prod_{i=1}^{\ell} m_{i}(\lambda)!,$$

where $\lambda = (\lambda_1, \ldots, \lambda_\ell)$.

Proposition 1.1. The monomial symmetric functions form a basis for Λ .

Definition 1.2. The elementary symmetric functions are

$$e_k = m_{(1^k)} = \sum_{i_1 < \dots < i_k} x_{i_1} \cdots x_{i_k},$$
$$e_\lambda = e_{\lambda_1} \cdots e_{\lambda_\ell},$$

where $\lambda = (\lambda_1, \ldots, \lambda_\ell)$.

Proposition 1.2. The elementary symmetric functions form a basis for Λ .

Proof. $f \in \Lambda$ is $c_{\lambda}x^{\lambda} + \cdots$, when written in lexicographic order.

Theorem 1.1. The elementary symmetric functions are free generators of Λ as a ring; *i.e.* they do not satisfy any algebraic equations.

Definition 1.3. The **power symmetric functions** are

$$p_k = m_{(k)} = x_1^k + x_2^k + \cdots,$$
$$p_\lambda = p_{\lambda_1} \cdots p_{\lambda_\ell},$$

where $\lambda = (\lambda_1, \ldots, \lambda_\ell)$.

Proposition 1.3. The power symmetric functions form a basis for Λ .

Definition 1.4. The complete symmetric functions are

$$h_k = \sum_{|\lambda|=k} m_{\lambda} = \sum_{i_1 \le i_2 \le \dots \le i_k} x_{i_1} x_{i_2} \cdots x_{i_k},$$
$$h_{\lambda} = h_{\lambda_1} \cdots h_{\lambda_{\ell}},$$

where $\lambda = (\lambda_1, \ldots, \lambda_\ell)$.

Proposition 1.4. The complete symmetric functions form a basis for Λ .

Definition 1.5. The Schur functions are

$$s_{\lambda} = \frac{a_{\lambda+\rho}}{a_{\rho}} = \sum_{A \in \text{SSYT}(\lambda)} x^{A},$$
$$x^{A} = x_{1}^{m_{1}(A)} x_{2}^{m_{2}(A)} \cdots .$$

Theorem 1.2. The Schur functions form a basis for Λ .

1.2 Involution and scalar product on symmetric functions

Here is a dictionary relating symmetric functions and representation theory of S_n

Symmetric functions	Representations of S_n
s_{λ}	S^{λ}
h_{λ}	$M^{\lambda} = \operatorname{ind}_{S_{\lambda_1} \times \dots \times a_{\lambda_{\ell}}}^{S_n} 1$
e_{λ}	$M^\lambda \otimes \mathrm{sgn}$

This correspondence tells that we should have an involution $\omega : \Lambda \to \Lambda$ sending $e_{\lambda} \mapsto h_{\lambda}$ corresponding to \otimes sgn.

Theorem 1.3. The involution $\omega : \Lambda \to \Lambda$ sends $s_{\lambda} \mapsto s_{\lambda'}$.

Theorem 1.4. The involution $\omega : \Lambda \to \Lambda$ sends $p_{\lambda} \mapsto \varepsilon_{\lambda} p_{\lambda}$.

There is a scalar product on Λ that relates to the scalar product on characters of representations of S_n .

Definition 1.6. Define a scalar product on Λ by its value on the basis of Schur functions:

$$\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda,\mu}$$

If $f = \sum c_{\lambda} s_{\lambda}$ and $g = \sum r_{\lambda} s_{\lambda}$, then

$$\langle f,g\rangle = \sum_{\lambda} c_{\lambda} r_{\lambda}.$$

Proposition 1.5. $\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}$ for all λ, μ . *Proof.* Write $M^{\mu} = \bigoplus K_{\lambda,\mu}S^{\lambda}$. Then $h_{\mu} = \sum K_{\lambda,\mu}s_{\lambda,\mu}$. We also have $s_{\lambda} = \sum K_{\lambda,\mu}m_{\mu}$. \Box

Proposition 1.6. $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda,\mu}$, where

$$z_{\lambda} = \frac{n!}{1^{m_1} m_1 ! 2^{m_2} m_2 ! \cdots}$$

is the size of the conjugacy class corresponding to λ in S_n .

Theorem 1.5. $s_{\lambda} = \sum_{\mu} \chi_{\lambda}[\mu] p_{\mu}.^{1}$

So we can talk about characters of the symmetric group by only talking about symmetric functions. $^{\rm 2}$

¹Maybe there is a factor of z_{λ} in here. Professor Pak doesn't remember.

²Newton studied p_{μ} . That's how old the idea of symmetric functions is.